

xL865 Global Form Factor Application Note

80000NT11207A Rev.1 - 2014-01-08

APPLICABILITY TABLE

PRODUCT
GL865-DUAL V3
GL865-QUAD V3
UL865-EUR
UL865-EUD
UL865-NAR
UL865-NAD
CL865-DUAL

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

Notice

While reasonable efforts have been made to assure the accuracy of this document, Telit assumes no liability resulting from any inaccuracies or omissions in this document, or from use of the information obtained herein. The information in this document has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies or omissions. Telit reserves the right to make changes to any products described herein and reserves the right to revise this document and to make changes from time to time in content hereof with no obligation to notify any person of revisions or changes. Telit does not assume any liability arising out of the application or use of any product, software, or circuit described herein; neither does it convey license under its patent rights or the rights of others.

It is possible that this publication may contain references to, or information about Telit products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that Telit intends to announce such Telit products, programming, or services in your country.

Copyrights

This instruction manual and the Telit products described in this instruction manual may be, include or describe copyrighted Telit material, such as computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and its licensors certain exclusive rights for copyrighted material, including the exclusive right to copy, reproduce in any form, distribute and make derivative works of the copyrighted material. Accordingly, any copyrighted material of Telit and its licensors contained herein or in the Telit products described in this instruction manual may not be copied, reproduced, distributed, merged or modified in any manner without the express written permission of Telit. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit, as arises by operation of law in the sale of a product.

Computer Software Copyrights

The Telit and 3rd Party supplied Software (SW) products described in this instruction manual may include copyrighted Telit and other 3rd Party supplied computer programs stored in semiconductor memories or other media. Laws in the Italy and other countries preserve for Telit and other 3rd Party supplied SW certain exclusive rights for copyrighted computer programs, including the exclusive right to copy or reproduce in any form the copyrighted computer program. Accordingly, any copyrighted Telit or other 3rd Party supplied SW computer programs contained in the Telit products described in this instruction manual may not be copied (reverse engineered) or reproduced in any manner without the express written permission of Telit or the 3rd Party SW supplier. Furthermore, the purchase of Telit products shall not be deemed to grant either directly or by implication, estoppel, or otherwise, any license under the copyrights, patents or patent applications of Telit or other 3rd Party supplied SW, except for the normal non-exclusive, royalty free license to use that arises by operation of law in the sale of a product.

Usage and Disclosure Restrictions

License Agreements

The software described in this document is the property of Telit and its licensors. It is furnished by express license agreement only and may be used only in accordance with the terms of such an agreement.

Copyrighted Materials

Software and documentation are copyrighted materials. Making unauthorized copies is prohibited by law. No part of the software or documentation may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, without prior written permission of Telit

High Risk Materials

Components, units, or third-party products used in the product described herein are NOT fault-tolerant and are NOT designed, manufactured, or intended for use as on-line control equipment in the following hazardous environments requiring fail-safe controls: the operation of Nuclear Facilities, Aircraft Navigation or Aircraft Communication Systems, Air Traffic Control, Life Support, or Weapons Systems (High Risk Activities"). Telit and its supplier(s) specifically disclaim any expressed or implied warranty of fitness for such High Risk Activities.

Trademarks

TELIT and the Stylized T Logo are registered in Trademark Office. All other product or service names are the property of their respective owners.

Copyright © Telit Communications S.p.A.

Contents

1.	Inti	roduction	6
	.1.	Scope	
	.2.	Contact Information, Support	
1	.3.	Text Conventions	
1	.4.	Related Documents	
2.	Ove	erview	8
		chanical Dimensions	
		dule connections	
		Common PIN-OUT	
		PIN-OUT differences	
		gic level specifications	
		B Port	
		[port	
		dio Section Overview	
		Analog	
y.	DOC	cument History	19

1. Introduction

The information presented in this document is believed to be accurate and reliable. However, no responsibility is assumed by Telit Communications S.p.A. for its use, nor any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of Telit Communications S.p.A. other than for circuitry embodied in Telit products. This document is subject to change without notice.

1.1. Scope

The aim of this document is the description of some hardware solutions useful for developing an application compatible with the products: Telit GL865 V3, Telit UL865, Telit CL865, and to highlight the minor differences between the above mentioned products.

1.2. Contact Information, Support

For general contact, technical support, to report documentation errors and to order manuals, contact Telit's Technical Support Center (TTSC) at:

TS-EMEA@telit.com

TS-NORTHAMERICA@telit.com

TS-LATINAMERICA@telit.com

TS-APAC@telit.com

Alternatively, use:

http://www.telit.com/en/products/technical-support-center/contact.php

For detailed information about where you can buy the Telit modules or for recommendations on accessories and components visit:

.http://www.telit.com

To register for product news and announcements or for product questions contact Telit's Technical Support Center (TTSC).

Our aim is to make this guide as helpful as possible. Keep us informed of your comments and suggestions for improvements.

Telit appreciates feedback from the users of our information.

1.3. Text Conventions

<u>Danger - This information MUST be followed or catastrophic equipment failure or bodily injury may occur.</u>

Caution or Warning – Alerts the user to important points about integrating the module, if these points are not followed, the module and end user equipment may fail or malfunction.

Tip or Information – Provides advice and suggestions that may be useful when integrating the module.

All dates are in ISO 8601 format, i.e. YYYY-MM-DD.

1.4. Related Documents

The following is a list of applicable documents downloadable from the Download Zone section of Telit's website http://www.telit.com

- UL865 Hardware User Guide 1VV0301050
- GL865-DUAL/QUAD V3 Hardware User Guide 1VV0301018
- CL865-DUAL Hardware User Guide 1VV0301104

2. Overview

In this document all the basic functions of a mobile phone will be taken into account; for each one of them a proper hardware solution will be suggested and eventually the wrong solutions and common errors to be avoided will be evidenced. Obviously this document cannot embrace the whole hardware solutions and products that may be designed. The wrong solutions to be avoided shall be considered as mandatory, while the suggested hardware configurations shall not be considered mandatory, instead the information given shall be used as a guide and a starting point for properly developing your product with the described modules. For further hardware details that may not be explained in this document refer to the Telit Product Description documents where all the hardware information is reported.

NOTICE:

The integration of the GL865 V3/UL865/CL865 cellular module within user application shall be done according to the design rules described in this manual.

The Unified Form Factor (UFF) is a concept of a products family characterized by the same mechanical and electrical form factor with different radio access technology.

This new approach protects customer's investment by giving you the possibility to migrate with the simple plug-and-play switch of your module with other wireless modules in the Unified Form Factor range without changing your application. In this way Telit offers easy access to different cellular technologies, certifications or bandwidth. For example if you develop applications based on today's mobile operator GSM/GPRS cellular technology if required it might be upgraded in the future to higher data speed capability such as UMTS/HSDPA.

The main advantages are summarized below:

- Increase of the efficiency in the use of the investments assigned to the development of the application (NRE), resulting in higher ROI, thus justifying the business choice of the UFF products;
- Products that are designed to bring technology enhancements to the integrators, such as higher data rates and new wireless standards while maintaining backwards compatibility in form factor and logical interfaces;
- Ease of integration;
- Telit as a single supplier of wireless modems;
- The customer can focus on its core business and application, not the management of operations and procurement required for wireless modems;
- One single application for different markets.

Telit, acknowledging the requirements of the developers, has taken great care to minimize any difference in the interface of the products with the Unified Form Factor; nevertheless some minor differences are still present. This is due to the fact that different technologies have different electrical and mechanical characteristics. However, the application can, with some care, easily accommodate multiple wireless modems.

This document has been created to guide you when developing applications based on Unified Form Factor concept by pointing out module differences.

3. Mechanical Dimensions

The Telit GL865 V3/UL865/CL865 overall dimensions are:

	GL865 V3	UL865	CL865
	[mm]	[mm]	[mm]
Length	24.4	24.4	24.4
Width	24.4	24.4	24.4
Thickness	2.6	2.6	2.45

In a common design application which is going to use multiple models, we recommend to consider the highest dimensions as reference.

NOTE:

The 3D drawings/models versions are available separately, and they are provided in IGES format. Please contact the Telit Technical Support to get the models.

4. Module connections

4.1. Common PIN-OUT

				Internal Pull	up (PU) or Pu	ll down (PD)	
Pin	Signal	I/O Function		GL865 V3	UL865	CL865	Type
Pow	ver Supply			_			
38	VBATT	-	Main power supply (Baseband)				Power
37	VBATT_PA	-	Main power supply (Radio PA)	power supply (Radio PA)			Power
23	AGND	-	Ground				Power
32	GND	-	Ground				Power
33	GND	-	Ground				Power
35	GND	-	Ground				Power
36	GND	-	Ground				Power
46	GND	Ì-	Ground				Power
SIM	I Card Interface						
9	SIMVCC	-	External SIM signal – Power supply for the SIM				1.8 / 3V
10	SIMRST	О	External SIM signal – Reset	ternal SIM signal – Reset			1.8 / 3V
11	SIMCLK	О	External SIM signal – Clock	ternal SIM signal – Clock			1.8 / 3V
12	SIMIO	I/O	External SIM signal - Data I/O	External SIM signal - Data I/O 4.7KΩ PU 4.7KΩ PU		4.7KΩ PU	1.8 / 3V
Tra	ce	•				•	
44	RXD_AUX	I	RX Data for debug monitor	12ΚΩ ΡU	10ΚΩ PU	50ΚΩ ΡU	CMOS 1.8V
45	TXD_AUX	О	TX Data for debug monitor				CMOS 1.8V
Pro	g. / Data + Hw Flow C	Contr	ol				•
1	C109/DCD	О	Output for Data carrier detect signal (DCD) to DTE				CMOS 1.8V
2	C125/RING	О	Output for Ring indicator signal (RI) to DTE				CMOS 1.8V
3	C107/DSR	О	Output for Data set ready signal (DSR) to DTE				CMOS 1.8V
4	C108/DTR	I	Input for Data terminal ready signal (DTR) from DTE	30ΚΩ ΡU	12ΚΩ ΡU	50ΚΩ ΡU	CMOS 1.8V
5	C105/RTS	I	Input for Request to send signal (RTS) from DTE	30ΚΩ ΡU	12ΚΩ ΡU	50ΚΩ ΡU	CMOS 1.8V
6	C106/CTS	О	Output for Clear to send signal (CTS) to DTE		•	·	CMOS 1.8V
7	C103/TXD	I	Serial data input (TXD) from DTE $12K\Omega PU \qquad 12K\Omega PU \qquad 50K\Omega PU$		50ΚΩ ΡU	CMOS 1.8V	
8	C104/RXD	O Serial data output to DTE			CMOS 1.8V		
Mis	cellaneous Functions						
43	VAUX/PWRMON	О	Supply Output for external accessories	See chapter 1	6		CMOS1.8V
47	RESET*	I	HW unconditional shutdown (Active Low)	2ΚΩ PU	4.7KΩ PU	57ΚΩ ΡU	Open collector
30	VRTC 1)	AO	VRTC Backup capacitor				Power

	a			Internal Pull u	p (PU) or Pu	ll down (PD)	
Pin	Signal	1/0	Function	GL865 V3	UL865	CL865	Type
Teli	it GPIOs						
42	GPIO_01 / DVI_WA0		Telit GPIO_01 Configurable GPIO/ Digital Audio Interface (WA0)	80ΚΩ-110ΚΩ PD	Hi Z	42KΩ PD	CMOS 1.8V
41	GPIO_02 / JDR / DVI_RX	I/O	Telit GPIO_02 Configurable GPIO/ / Jammer Detect Report / Digital Audio Interface (RX)	18KΩ-25KΩ PD	Hi Z	42KΩ PD	CMOS 1.8V
40	GPIO_03 / DVI_TX	I/O	Telit GPIO_03 Configurable GPIO/ Digital Audio Interface (TX)	80KΩ-110KΩ PD	Hi Z	42ΚΩ PD	CMOS 1.8V
	GPIO_04/ TX Disable / DVI_CLK	I/O	Telit GPIO_04 Configurable GPIO/ TX Disable input / Digital Audio Interface (CLK)	18ΚΩ-25ΚΩ PD	Hi Z	42ΚΩ PD	CMOS 1.8V
29	GPIO_05 / RFTXMON	I/O	Telit GPIO_05 Configurable GPIO/ Transmitter ON monitor	28ΚΩ-40ΚΩ PD	Hi Z	42ΚΩ PD	CMOS 1.8V
28	GPIO_06 / ALARM	I/O	Telit GPIO_06 Configurable GPIO/ ALARM	28ΚΩ-40ΚΩ PD	Hi Z	42KΩ PD	CMOS 1.8V
27	GPIO_07 / BUZZER	I/O	Telit GPIO_07 Configurable GPIO/ Buzzer	28ΚΩ-40ΚΩ PD	Hi Z	42KΩ PD	CMOS 1.8V
26	GPIO_08/ STAT_LED	I/O	Telit GPIO_08 Configurable GPIO/ Status Led	28ΚΩ-40ΚΩ PD	Hi Z	42KΩ PD	CMOS 1.8V
RF	RF SECTION						
34	34 ANTENNA I/O GSM/EDGE/UMTS Antenna (50 ohm) RF						
RE	RESERVED						
19,	31, 48						

WARNING:

RESERVED pins reported above must not be connected.

Unlike other Telit's products the RTC feature of CL865 cannot be operated with VRTC only and the external RTC backup capacitor will be also useless. VBATT must be connected to support RTC feature for CL865.

NOTE:

The internal GPIO's pull up/pull down could be set to the preferred status for the application using the AT#GPIO command.

Please refer for the AT Commands User Guide for the detailed command Syntax.

4.2. PIN-OUT differences

Pin	Module	Signal	I/O	Function	
	UL865 USB_VBUS AI Power s		AI	Power sense for the internal USB transceiver.	
16	GL865	RESERVED	-		
	CL865	USB_VBUS	ΑI	Power for the internal USB transceiver.	
	UL865	USB_D-	I/O	USB differential Data (-)	
17	GL865	RESERVED	-	-	
	CL865	USB_D-	I/O	USB differential Data (-)	
	UL865	USB_D+	I/O	USB differential Data (+)	
18	GL865	RESERVED	-	-	
	CL865	USB_D+	I/O	USB differential Data (+)	
	UL865	RESERVED	-	-	
20	GL865	EAR-	AO	Earphone signal output, phase -	
	CL865	EAR-	AO	Earphone signal output, phase -	
	UL865	RESERVED	-	-	
21	GL865	EAR+	AO	Earphone signal output, phase +	
	CL865	EAR+	AO	Earphone signal output, phase +	
	UL865	RESERVED	-	-	
22	GL865	Mic-	AI	Mic. signal input; phase-	
	CL865	Mic-	AI	Mic. signal input; phase-	
	UL865	RESERVED	-	-	
24	GL865	Mic+	AI	Mic. signal input; phase+	
	CL865	Mic+	ΑI	Mic. signal input; phase+	
	UL865	SPI_CLK	I/O	SPI_CLK	
25	GL865	RESERVED	-	-	
	CL865	RESERVED	-	-	

NOTE:

In a common design UL865/GL865 V3/CL865 the RESERVED pins in the table above may be connected.

5. Logic level specifications

The following tables show the logic level specifications for GL865 V3, UL865 and CL865:

Absolute Maximum Ratings -Not Functional

	GL865 V3		UL	865	CL865	
Parameter	Min	Max	Min	Max	Min	Max
Input level on any digital pin (CMOS 1.8) with respect to ground	-0.3V	2.1V	-0.3V	2.3V	-0.3V	2.3V

Operating Range - Interface levels (1.8V CMOS)

	GL86	65 V3	UL	865	CL865	
Parameter	Min	Max	Min	Max	Min	Max
Input high level	1.3V	1.9V	1.5V	1.9V	1.5V	2.1V
Input low level	0.0V	0.35V	0.0V	0.35V	0.0V	0.35V
Output high level	1.6V	1.9V	1.6V	1.9V	1.35V	1.8V
Output low level	0.0V	0.2V	0.0V	0.2V	0.0V	0.45V

Current characteristics (Preliminary values)

	GL865 V3	UL865	CL865
Parameter	Typical	Typical	Typical
Output Current	1mA	1mA	2mA
Input Current	1μΑ	1μΑ	30μΑ

6. USB Port

The UL865 and CL865 includes an integrated universal serial bus (USB) transceiver, compliant with USB 2.0 specifications and supporting the USB Full-Speed (12Mb/s) mode. The UL865 supports also High-Speed (480Mb/s) mode. For this reason the signal traces should be routed carefully: trace lengths, number of vias and capacitive loading should be minimized and the characteristic impedance value should be as close as possible to 90 Ohms differential.

The impedance value of USB_DPLUS and USB_DMINUS signals for CL865 should be as close as possible to 100 Ohms differential.

Pins 16, 17 and 18 are internally unconnected on GL865 V3 so in a common design the USB port can be routed to the MCU in order to have the possibility to use it in case UL865 and CL865 are mounted.

If not used we suggest routing pins 16, 17 and 18 of xL865 to test points (or better to a mini USB connector not mounted).

7. SPI port

The UL865 module is provided by one 3 wire SPI interface. The AP has the master role i.e. it supplies the clock. The following table is listing the available signals:

PAD	Model	Signal	I/O	Function	COMMENT
	UL865	SPI_MOSI/ TX_AUX	I/O	SPI MOSI	Shared with TX_AUX
45	GL865	TX_AUX	О	Auxiliary UART (TX Data to DTE)	
	CL865	TX_AUX	О	Auxiliary UART (TX Data to DTE)	
	UL865	SPI_MISO/RX_AUX	I/O	SPI MISO	Shared with RX_AUX
44	GL865	RX_AUX	I	Auxiliary UART (RX Data from DTE)	
	CL865	RX_AUX	Ι	Auxiliary UART (RX Data from DTE)	
	UL865	SPI_CLK	I	SPI CLK	
25	GL865	RESERVED	i	-	-
	CL865	RESERVED	-	RESERVED	

NOTE:

Due to the shared functions, when the SPI port is used, it is not possible to use the AUX_UART port.

WARNING:

In a common design xL865 the SPI port should not be used.

8. Audio Section Overview

8.1. Analog

On UL865 the analog audio interface is not present; in an xL865 common design you should use the digital audio interface.

9. Document History

Revision	Date	Changes
Rev. 0	2013-10-07	Initial release
Rev. 1	2014-01-08	Added CL865